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Why?

* Because it’s a noisy world

* Experimental Noise
—Random
—Systematic (Batch effect)
* Inherent Noise
—Intrinsic (Within Cell)
—Extrinsic (Between Cell)



How (to handle noise)?

e Measure and remove
— Increase sample size
— Better algorithms

* Embrace
— Recognize and accept noise



What?
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Model Checking

 Why
— Complexity of simulation models are increasing

— Need to validate the model

 Does the simulation model exhibit certain behaviors
* E.g. P (Survive) > 0.5

— Current model checker are inadequate
* Not scaleable

* How
— Integrate it with a simulation engine

e What

— Implement a model checker + simulation engine



Current Model Checkers

 MC2 (Donaldson and Gilbert, 2008b)

— An offline model checker
— Independent of the simulation model

* Only needs simulation results



Comparison

MC2

— Checks after simulation completes
— Only needs simulation results

* Able to do checking on existing traces and biological
experiments results

MIRACH

— Checks as simulation runs
— More efficient in terms of running time



Minimum

Viable

Comparison

* Using Levchenko et al. (2000) model
e 22 entities (nodes)
* 30 reactions (edges)

*in seconds 100 Samples 1000 Samples
MC2 (Donaldson and Gilbert 2008a)

Initialization 12.14 (0.40) 107.95 (1.52)
Checking 10.13 (0.29) 88.58 (1.11)
Total Time 22.27 196.53
MIRACH

Initialization 6.85 (0.24) 6.86 (0.31)
Checking 5.34 (0.20) 40.74 (0.90)
Total Time 12.19 47.6

Bioinformatics. 27(5): 734-5, 2011



How many samples?



How many samples?

* Exact or Approximative
— Exact explores all possible states
— Approximative does sampling

* Biological systems are inherently noisy
— Have infinite possible states
— Requires approximative approach



How many samples?

-

Can you design a vending machine for students that
will..

~

Randomly dispenses Red / Yellow M&M
But half the time, red M&M should be dispensed
(i.e. probability of red M&M = 0.5)

N y
6

School management

Sure. No

Problem!

Supplier



How many samples?

Great! Let me test
it first......

Here it is! The
vending machine as
you wanted it!
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School management
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wanted! | put 10 coins
in and only one of the
candy is red.... There is

a problem!

M~

School management
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How many samples?

(Argh! This is not what I\

Oops! Sorry there
was a problem with
our algorithm..



Here is the new

How many samples?
( seems good to me.. | h o O
put about 100 coins °“.“‘ “‘O L) : :
and 49 were red and G P ‘9“9‘.1" ‘) &
51 was yellow... most D009 HoHod L&
likely it is fine ® @9 9 o ¢ O
\/ Y 0000 o, 0000

sure? How many

But how do | know for
samples should | take?

vending machine..
Should be good

Supplier



How many samples?

* Donaldson and Gilbert (2008)

— Just sample a fixed number that is assumed to be
large enough (10,000)

* Clarke et al. (2008)

— Based on sequential hypothesis testing

— Sample until enough (with some error bound)
* by Younes and Simmons (2002)



Sampling Algorithm

 Why
— Sampling is required to understand stochastic systems
* Ask probabilistic questions such as P (KOSPI Increase > 0.7)?

— Current approaches have practical limitations

 How
— Leverage on current approaches

e What

— A sampling algorithm that works in all situations



Younes and Simmons (2002)

* Algorithm:
1. Sample (Simulate)

2. After each sample, determine if another sample
is required or a decision can be made

* Relaxed the standard hypothesis testing from
—Hy:p20vs.H:p<Bto
—Hy;:p26+06 vs.H:p<B-6

* (B-0,0+6)is known as the indifference region



Younes and Simmons (2002)

_ L Indifference ]
* Plus points |_region

— Guaranteed error rates when p
is outside indifference region [ AR, L.

.\

KX
SRS
2

False negative
* Limitation
— Error rates are not bounded ifp 5
is within indifference region

— Choice of 6 is critical False positive
* Too small, samples required B A
increases significantly
* Too large, higher chance for p to be B
inside indifference region 0 —



Q Proposed algorithm

 Dynamically select the indifference region
— Initialize 6 to 1.0

— Half 6 based on conditions below
— Stop when a definite result is returned

* Uses two acceptance tests
— Hy:p>0vs.H;: p <0 -6 with <a, y>
— H'y:p>0+06vs.H:p <6 with <y, f>.

p 20 is accepted as true iff H, and H',

p 20 is accepted as false iff H; and H',
else half &

BMC Bioinformatics 2012, 13(Suppl 17):S15



Proposed algorithm

* Asampling algorithm that..

— Can ask probabilistic questions
e E.g. P (KOSPI Increase > 0.7)?

— And obtain “good” decisions

* Decision with N samples = Decision with infinite samples

— With statistical guarantees on the error rates

e What can we do with it?



Bagging

1. Given a testinstance T and a training set S

2. Train N number of classifiers

— from bags of M instances randomly drawn with
repetitions from S

3. Predict T to be positive if >N/2 of these
classifiers predict T to be positive

e Standard bagging
— N would be arbitrarily fixed at 10, 100 or so



Dynamic Bagging

* Will >50% of classifiers predict T to be
positive?
— P (T to be predicted as Positive > 0.5)?

* Advantages over standard bagging
— No need to a priori and arbitrarily fix N
— Statistical guarantees on the error rates

» Decision with N samples = Decision with infinite samples

BMC Systems Biology 2012, 6(Suppl 2):S3



Minimum
Viable
Product




Things | will do differently (maybe..)

e Serve the correct “customers”

— Biologists and medical doctors instead of
reviewers

 Create what is needed, not what | can



Thank you!



