KOH Chuan Hock 許泉福

Koh and Wong BMC Systems Biology 2012, 6(Suppl 2):S3 http://www.biomedcentral.com/1752-0509/6/S2/S3

PROCEEDINGS

Open Access

Embracing noise to improve cross-batch prediction accuracy

Chuan Hock Koh^{1,2*}, Limsoon Wong²

From 23rd International Conference on Genome Informatics (GIW 2012) Tainan, Taiwan, 12-14 December 2012

BIOINFORMATICS APPLICATIONS NOTE

Vol. 27 no. 5 2011, pages 734-735 doi:10.1093/bioinformatics/btq727

Systems biology

Advance Access publication January 5, 2011

MIRACH: efficient model checker for quantitative biological pathway models

Chuan Hock Koh^{1,2,3}, Masao Nagasaki^{3,*}, Ayumu Saito³, Chen Li³, Limsoon Wong² and Satoru Mivano³

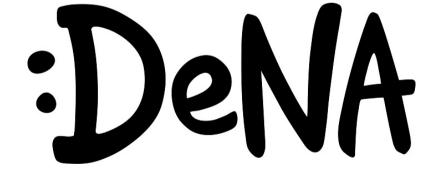
¹NUS Graduate School for Integrative Sciences and Engineering, Singapore 117597, ²School of Computing, National University of Singapore, Computing Drive, Singapore 117417 and ³Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Associate Editor: Trey Ideker

Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity

Julian Lai^{a,b}, Chuan Hock Koh^{c,d}, Monika Tjota^{a,b}, Laurent Pieuchot^{a,b}, Vignesh Raman^{a,b}, Karthik Balakrishna Chandrababu^b, Daiwen Yang^b, Limsoon Wong^c, and Gregory Jedd^{a,b,1}

^aTemasek Life Sciences Laboratory and ^bDepartment of Biological Sciences, National University of Singapore, Singapore 117604; ^cSchool of Computing, National University of Singapore, Singapore 117417; and ^dGraduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597

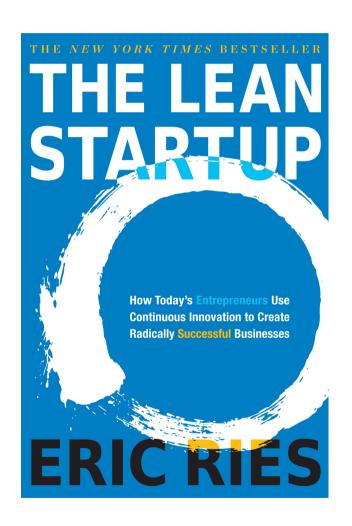
Journal of Bioinformatics and Computational Biology Vol. 7, No. 6 (2009) 973-990 © Imperial College Press

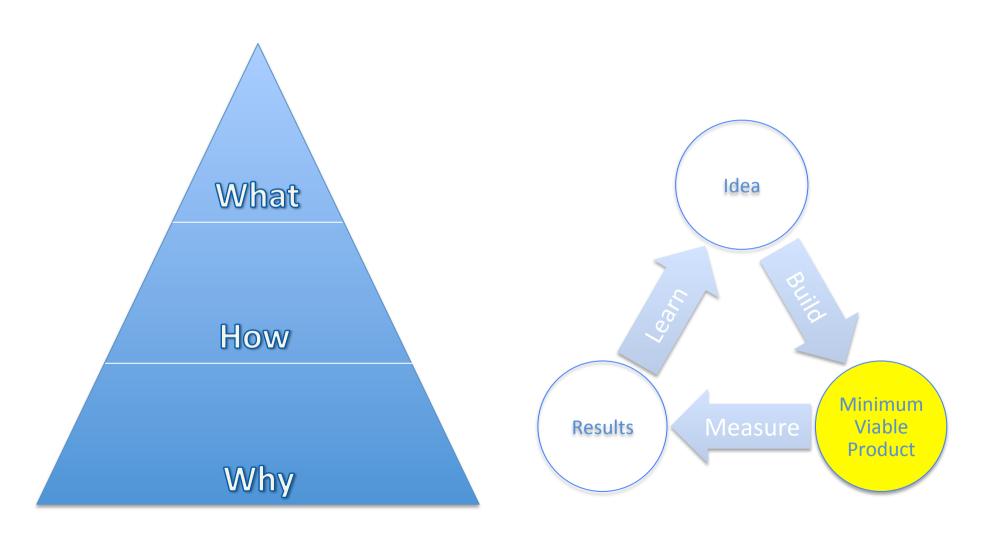


SIRIUS PSB: A GENERIC SYSTEM FOR ANALYSIS OF BIOLOGICAL SEQUENCES

CHUAN HOCK KOH*,†,§, SHARENE LIN*,¶, GREGORY JEDD‡,∥ and LIMSOON WONG*,**

楽の天 ® Rakuten

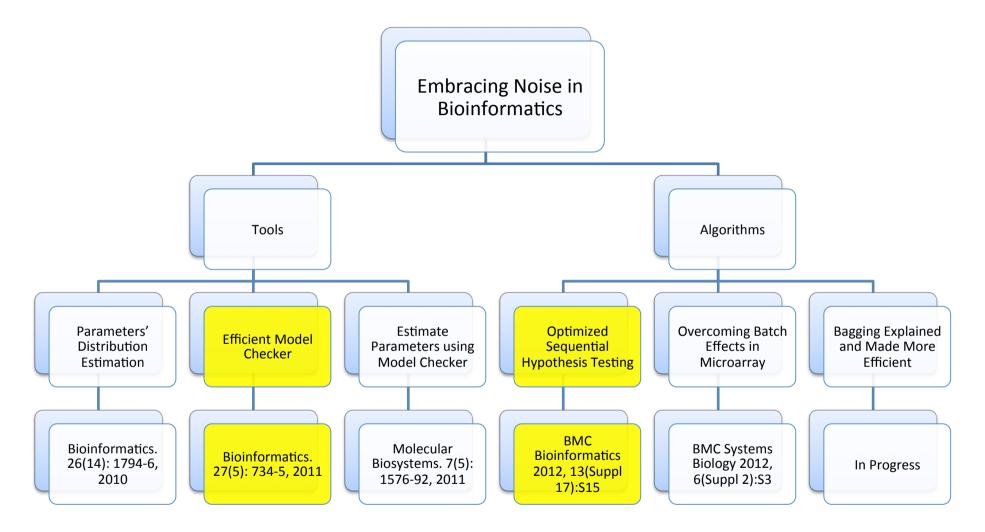



Lean Research

The Lazy Lean Startup

EMBRACING NOISE IN BIOINFORMATICS

A Thesis submitted for the degree of Doctor of Philosophy


Why?

- Because it's a noisy world
 - Experimental Noise
 - -Random
 - –Systematic (Batch effect)
 - Inherent Noise
 - —Intrinsic (Within Cell)
 - -Extrinsic (Between Cell)

How (to handle noise)?

- Measure and remove
 - Increase sample size
 - Better algorithms
- Embrace
 - Recognize and accept noise

What?

Model Checking

- Why
 - Complexity of simulation models are increasing
 - Need to validate the model
 - Does the simulation model exhibit certain behaviors
 - E.g. P (Survive) > 0.5
 - Current model checker are inadequate
 - Not scaleable
- How
 - Integrate it with a simulation engine
- What
 - Implement a model checker + simulation engine

Current Model Checkers

- MC2 (Donaldson and Gilbert, 2008b)
 - An offline model checker
 - Independent of the simulation model
 - Only needs simulation results

Comparison

• MC2

- Checks after simulation completes
- Only needs simulation results
 - Able to do checking on existing traces and biological experiments results

MIRACH

- Checks as simulation runs
- More efficient in terms of running time

Comparison

- Using Levchenko et al. (2000) model
 - 22 entities (nodes)
 - 30 reactions (edges)

*in seconds	100 Samples	1000 Samples
MC2 (Donaldson and Gilbert 2008a)		
Initialization	12.14 (0.40)	107.95 (1.52)
Checking	10.13 (0.29)	88.58 (1.11)
Total Time	22.27	196.53
MIRACH		
Initialization	6.85 (0.24)	6.86 (0.31)
Checking	5.34 (0.20)	40.74 (0.90)
Total Time	12.19	47.6

Bioinformatics. 27(5): 734-5, 2011

- Exact or Approximative
 - Exact explores all possible states
 - Approximative does sampling
- Biological systems are inherently noisy
 - Have infinite possible states
 - Requires approximative approach

Can you design a vending machine for students that will..

- Randomly dispenses Red / Yellow M&M
- But half the time, red M&M should be dispensed (i.e. probability of red M&M = 0.5)

School management

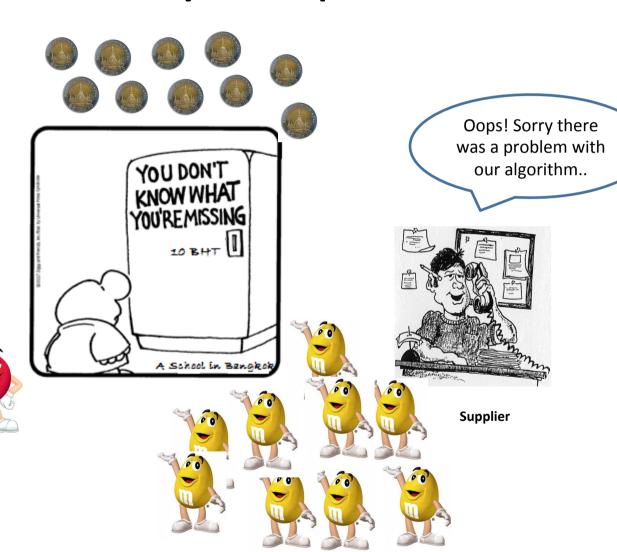
Sure. No Problem!

Supplier

Great! Let me test it first

School management

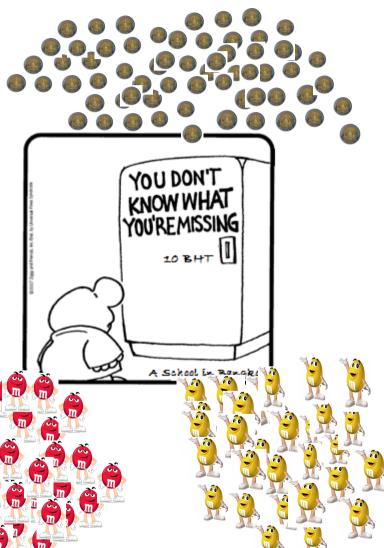
Here it is! The vending machine as you wanted it!



Supplier

Argh! This is not what I wanted! I put 10 coins in and only one of the candy is red.... There is a problem!

School management



Seems good to me.. I put about 100 coins and 49 were red and 51 was yellow... most likely it is fine

School management

But how do I know for sure? How many samples should I take?

Here is the new vending machine..
Should be good now..

Supplier

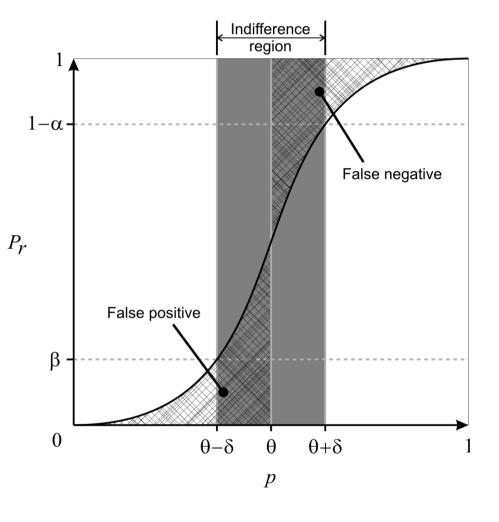
- Donaldson and Gilbert (2008)
 - Just sample a fixed number that is assumed to be large enough (10,000)
- Clarke et al. (2008)
 - Based on sequential hypothesis testing
 - Sample until enough (with some error bound)
 - by Younes and Simmons (2002)

Sampling Algorithm

- Why
 - Sampling is required to understand stochastic systems
 - Ask probabilistic questions such as P (KOSPI Increase > 0.7)?
 - Current approaches have practical limitations
- How
 - Leverage on current approaches
- What
 - A sampling algorithm that works in all situations

Younes and Simmons (2002)

- Algorithm:
 - 1. Sample (Simulate)
 - 2. After each sample, determine if another sample is required or a decision can be made
- Relaxed the standard hypothesis testing from
 - $-H_0$: $p \ge \theta$ vs. H_1 : $p < \theta$ to
 - $-H_0$: $p \ge \theta + \delta$ vs. H_1 : $p \le \theta \delta$
 - $(\theta \delta, \theta + \delta)$ is known as the indifference region


Younes and Simmons (2002)

Plus points

 Guaranteed error rates when p is outside indifference region

Limitation

- Error rates are not bounded if p
 is within indifference region
- Choice of δ is critical
 - Too small, samples required increases significantly
 - Too large, higher chance for p to be inside indifference region

Proposed algorithm

- Dynamically select the indifference region
 - Initialize δ to 1.0
 - Half δ based on conditions below
 - Stop when a definite result is returned
- Uses two acceptance tests
 - H_0 : $p > \theta$ vs. H_1 : $p \le \theta \delta$ with $\langle \alpha, \gamma \rangle$
 - H'₀: p > θ + δ vs. H'₁: p ≤ θ with <γ, β>.

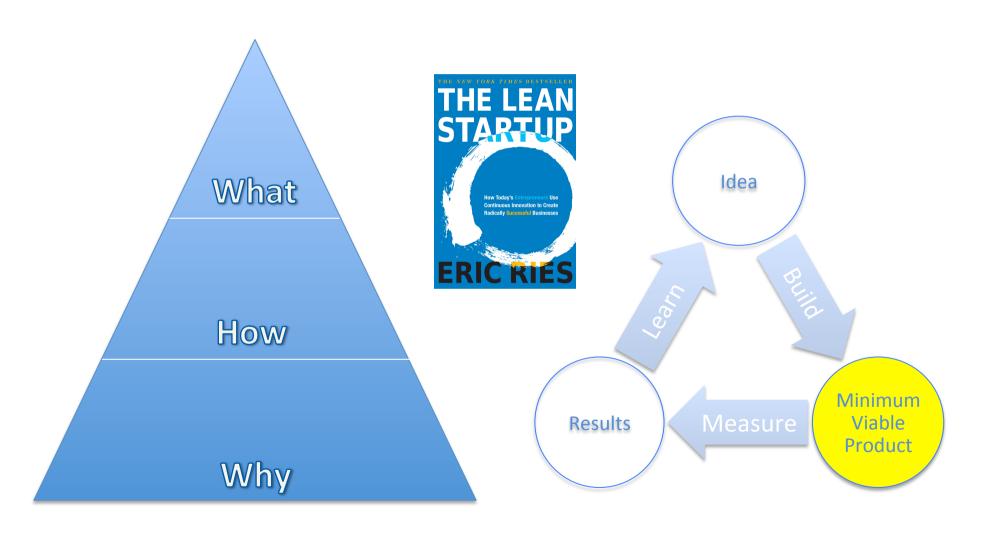
 $p \ge \theta$ is accepted as true iff H_0 and H'_0 $p \ge \theta$ is accepted as false iff H_1 and H'_1 else half δ

Proposed algorithm

- A sampling algorithm that...
 - Can ask probabilistic questions
 - E.g. P (KOSPI Increase > 0.7)?
 - And obtain "good" decisions
 - Decision with *N* samples = Decision with infinite *samples*
 - With statistical guarantees on the error rates

What can we do with it?

Bagging


- 1. Given a test instance *T* and a training set *S*
- 2. Train N number of classifiers
 - from bags of M instances randomly drawn with repetitions from S
- 3. Predict T to be positive if >N/2 of these classifiers predict T to be positive
- Standard bagging
 - N would be arbitrarily fixed at 10, 100 or so

Dynamic Bagging

- Will >50% of classifiers predict T to be positive?
 - P (T to be predicted as Positive > 0.5)?
- Advantages over standard bagging
 - No need to a priori and arbitrarily fix N
 - Statistical guarantees on the error rates
 - Decision with N samples = Decision with infinite samples

Recap

Things I will do differently (maybe..)

- Serve the correct "customers"
 - Biologists and medical doctors instead of reviewers

Create what is needed, not what I can

Thank you!